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Abstract: In this paper, a fluid model is presented which contains the general linear equation of state
including the gravitation term. The obtained spherical symmetric Euler equation and the continuity
equations were investigated with the Sedov-type time-dependent self-similar ansatz which is capable
of describing physically relevant diffusive and disperse solutions. The result of the space and time-
dependent fluid density and radial velocity fields are presented and analyzed. Additionally, the role
of the initial velocity on the kinetic and total energy densities of the fluid is discussed. This leads to a
model, which can be considered as a simple model for a dark-fluid.

Keywords: dark fluid; stiff matter; self-similar solution; analytic relativistic solution

PACS: 34.10. + x; 34.50. − s; 34.50.Fa

MSC: 35Q31; 83C56

1. Introduction

Einstein equations can be solved with fluid energy-momentum tensors and some of
them are possible candidates for the description of dark (fluid) matter. In our study, one of
the simplest polytropic equations of state (EoS) is investigated, the linear one, which can
be inserted into the spherical Euler equation. Thus far, there is no general mathematical
technique to ascertain all solutions and properties of nonlinear partial differential equations
(PDE) or systems; however, there are some methods that give us a glimpse into some kinds
of solutions.

One of the main directions of this research is to find scaling solutions of the gravi-
tational fields, which can be good candidates to describe the evolution of the Universe
or collapse of compact astrophysical objects even in multi-dimensional space-time [1–4].
In these self-similar scaling models, the time evolution of the scaling is usually restricted
by the metric. Another proposed analytic solution method is the self-similar ansatz by
Sedov [5], which usually provides physically reasonable solutions with disperse features
and with asymptotic power-law decays. This ansatz has already been applied successfully
in some other hydrodynamical solutions [6–8].

There are some studies available that investigate the stability (or other properties of)
various relativistic or non-relativistic gravitating fluids [9–16]. In their monograph, Deruelle
and Uzan [17] analyse gravitating fluids and present some solutions as well. Based on our
knowledge, there are no time-dependent self-similar solutions known and discussed for
any kind of fluid hydrodynamical model. Our motivation here is to investigate this disperse
solution in relation to the evolution of a gravitating system. Moreover, our results are
compatible with the ideas of dark matter powered evolution of the early Universe [18–20]
or they can be also applied to celestial dark matter objects [21].

In this paper, a simplified fluid EoS is applied, and we study the behavior and the
physical relevance of the self-similar numeric hydrodynamic solutions for specific cases in
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the Newtonian approximation [22]. Finally, we provide the velocity, density, and kinetic
energy density profiles for the space-time evolution.

2. The Model

Let us assume a one-dimensional, spherical symmetric system that is described by a
compressible continuity and Euler coupled PDE, respectively:

ρt + urρ + uρr +
2uρ

r
= 0,

ut + uur = −
1
ρ

pr −
(ρ

r

)
r
. (1)

Here, the subscripts t and r mean the corresponding time- and spatial partial deriva-
tives. Additionally, ρ = ρ(r, t), u = u(r, t), and p = p(r, t) mean the density, the radial
velocity component and the pressure field distributions, respectively. Note that the speed
of the light and the gravitational coupling constant are set to be unity.

The second term in the Euler Equation (1) on the right-hand side is the gravitating
term: the radial component of the gradient of the Newtonian potential. Figure 1 represents
the corresponding geometry.

Figure 1. Representation of the corresponding geometry. The sphere represents the expanding dark
fluid, and the arrow the radial velocity.

The general linear EoS, which has other names in different scientific communities like
barotropic or “stiff matter” EoS, has been applied:

p = wρn for n = 1. (2)

There are numerous EoS available for fluids or in astrophysics; for more, see Emden [23].
He was the first who investigated polytropic EoS inside stars at the beginning of the
20th century. The physics of various polytropic EoS in astrophysics can be found in the
monograph [24]. It is automatically fulfilled that the adiabatic speed of sound is constant:

dp
dρ

= c2
s = w (3)

which is a necessary physical condition. Different numerical values of the EoS strength w may
lead to different dark matter scenarios for negative values as it was outlined by Perkov [25].
For a better understanding of our calculations, we give some examples according to [26–32]:

(i) w = 0 means the EoS for ordinary non-relativistic ‘matter’ (e.g., cold dust);
(ii) w = 1/3 means ultra-relativistic ‘radiation’ (including neutrinos) and, in the very

early universe, other particles that later become non-relativistic;
(iii) w = −1 is the simplest case and describes the expanding universe, hypothetical

phantom energy w < −1 would cause Big Rip;
(iv) w 6= −1 means quintessence as hypothetical fluid;
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(v) w = −1/3 is responsible for the flatness of the Big Bang;
(vi) A scalar field φ can be viewed as a sort of perfect fluid with EoS of

w =
1
2 φ2

t −U(φ)
1
2 φ2

t + U(φ),
(4)

where φt is the time derivative of φ, and U(φ) is the potential energy. A free U(φ) = 0
scalar field has w = −1 and the one with vanishing kinetic energy is equivalent to
w = 1. Any EoS in between but not crossing the w 6= −1 barrier is known as the
Phantom Divide Line (PDL) [27] and is achievable,
which makes scalar fields useful models for any phenomena in cosmology.

The Universe has gone through three distinct eras characterized by the z red shift
parameter values: radiation-dominated at z ≥ 3000; matter-dominated if 3000 ≥ z ≥ 0.5;
and dark-energy-dominated when z ≤ 0.5. The evolution of the scale factor is controlled by
the dominant energy form based on the Friedmann–Lemaître–Robertson–Walker equations:
a(t) ∝ t2/3(1 + w) (for constant w). During the radiation-dominated era, a(t) ∝ t1/2, while
in the matter-dominated era, a(t) ∝ t2/3. Finally, for the dark energy-dominated era, one
can assume w = −1, which is asymptotically a(t) ∝ eHt [33]. In our solutions, we will
consider most of the above cases, which lead to the same solution family, but our main
focus will be on the case with w = −1.

3. Analytic Solution with the Sedov–Ansatz

Disperse analytic solutions will be presented and analysed by applying the well-
known self-similar ansatz [5,34,35] of

V(x, t) = t−α f
(

x
tβ

)
:= t−α f (ω), (5)

where V(x, t) can be an arbitrary variable of a PDE, where t means time and x means spatial
dependence. The function f (ω) is called the shape function. The similarity exponents α
and β have crucial importance because α represents the rate of decay of the magnitude
V(x, t), and β is responsible for the rate of spread (or contraction if β < 0) of the spatial
distribution for large times. Solutions with integer exponents have the name of self-similar
solutions of the first kind (in some cases, these can be derived from dimensional analysis
of the investigated problem). This ansatz can be generalized when we consider real and
continuous functions a(t) and b(t) instead of the exponents tα and tβ.

The most remarkable result of this ansatz is the Gaussian- or fundamental solution
of the regular heat conduction equation (or for the regular diffusion equation) when
α = β = 1/2; this result is clearly presented in Figure 2. This applied Ansatz is based on
the statement that a self-similar solution exists, and every physical parameter preserves
its form during the expansion. Self-similar solutions in most cases explain the asymptotic
behavior of an unbounded or a far-field problem; the space coordinate x and the time t
appear only in the function of f (x/tβ). This clearly means that the existence of the self-
similar variables implies the lack of characteristic time and length scales. These kinds of
solutions are in most cases not unique and do not take into consideration the initial stage
of the physical process. The solutions of these kinds describe the so-called intermediate
asymptotic of the investigated problem: they hold only when the precise initial conditions
are no longer relevant, but before the system has achieved its final steady state. For some
peculiar systems, it can be clearly shown that the self-similar solution fulfils the source type
or (Dirac-delta type) initial condition. This is not the case. Self-similar solutions are much
simpler than the full solutions and therefore are easier to understand and investigate in
different domains of the parameter space. A final reason for studying these functions is
that they are solutions of a system of ODEs and hence do not suffer from the full numerical
problems of the initial PDEs. For some systems, self-similar solutions help us to understand
the global properties of the process e.g., the existence of compact supports.
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Figure 2. A self-similar solution of Equation (5) for t1 < t2. The presented curves are Gaussians for
regular heat conduction.

In the last decade, this ansatz has been successfully applied for numerous physical
systems like heat conduction [36], a nonlinear Maxwell equation [37] and especially multidi-
mensional Euler and Navier–Stokes equations [6,7] or the Madelung–Schrödinger quantum
fluid equations [8] ending up with Refs. [38,39].

For our system, we apply the following notations for the two shape functions in
natural units

u = t−α f
(

r
tβ

)
and ρ = t−γg

(
r
tβ

)
, (6)

where the new variable is ω = r/tβ.
Calculate time and spatial derivatives of the Equation (6) and substitute with

Equation (1) and, using the relation, r = r
tβ tβ = ωtβ, we finally obtain the next nonlinear

ordinary differential equation (ODE) system

g−ωg′ + f ′g + f g′ +
2g f
ω

= 0,

−ω f ′ + f f ′ = −w
g′

g
− g′

ω
+

g
ω2 , (7)

where prime means derivation with respect to ω.
For the initially free three self-similar exponents α, β, and γ, we obtained the following

numerical values: α = 0, β = 1, and γ = −1. This means that dynamical variables, velocity
and density, have a spreading property as time goes on (β = 1). Our physical intuition
says that spreadings are somehow similar to expansion, which is a basic property of the
Universe. The two “decay” exponents (α and γ) are, however, not positive, which means
that the magnitude of the velocity, u, remains the same even for large times. The role of the
density, ρ, is even more relevant; it increases linearly in time. We note the usual decaying
and dispersive solutions with zero asymptotic values.

The analysis of the relations among the self-similar exponents can end up with three
different scenarios:

• The linear algebraic equation system which contains the exponents is overdetermined,
and leads to a contradiction. In this case, the system has inherently no physically
self-similar power-law decaying or exploding solutions. Such systems are very rare;
however, damped wave equations like the telegraph equations are like this.

• All exponents have given numerical values. In that case, the analysis of the solutions is
simple. The derived coupled nonlinear ODE system can be analyzed, sometimes it can
be decoupled and in best cases all variables can be written down in analytic formulas.

• The given linear algebraic equation system is under-determined, leaving usually one
or two self-similar exponents completely free, this means extra free parameters in
the obtained ODE system. Such systems have a very rich mathematical structure.
The derived free exponent can have either negative or positive sign. Negative values
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in most cases result in power-law divergent or exploding solutions on the other
side; positive exponents usually mean power-law decaying solutions, which are very
desirable for dissipative systems.

In our former works, mostly viscous fluids have been analysed, like incompressible or
compressible viscous Newtonian fluids, where all exponents had positive values, which is
also true for the regular diffusion process, where α and β = 1/2. In our recent case, these
values are rather expected to be negative since the observed, approximately-flat Euclidian
Universe scenario.

Our present ODE system of Equation (7) cannot be separated and solved with analytic
means. Non-autonomous ODE systems can be linearized, and the stationer points can
be found which helps to sketch the global qualitative properties of the solutions in the
phase space. No such mathematical method exists for non-autonomous nonlinear systems.
Therefore, there is no general tool in our hands that could help us to determine the global
properties of the fluid. The equations of the stationary points, however, can be given as
f ′(ω) = 0 and g′(ω) = 0, then we obtain

gω + 2 f g = 0,

g2 = 0. (8)

From the first equation for g 6= 0 case, we obtain that the f = −ω
2 function contains

the stationary points, with the dimensional definition of velocity, r/2t, with a lack of
information on the general properties of the solutions. From the second equation, one can
obtain that g = 0 is stationary point, which is a trivial statement meaning that zero density
is a stationery point.

According to our best knowledge, it is unclear whether for this ODE system mathemat-
ically rigorous existence or unicity theorems have been proven or not. The only physically
reasonable way is to perform numerous calculations with a large number of parameter sets
to explore the properties of the solutions in a wide range. Our numerical experiences say
that both field variables have a continuous solution on a closed interval on the half axis of
time and radial distance. We found no compact supports or ruptures in the solutions.

4. Results

To understand the physics of the presented model, a systematic parameter study of
Equation (7) is required. First, we investigate the role of the w, which is the strength of the
linear equation of state as well.

Figure 3 presents the density and velocity shape functions for four physically relevant
different EoS strength parameters, w = −1, −0.33, 0, and 0.33. We integrate the ODE
system between ωmin = 1 · 10−3 and ωmax = 5 · 101. As initial conditions for velocity and
density, f (ωmin) = 0.5 and g(ωmin) = 0.01 have been taken. The ratio f (ωmin)/g(ωmin)
was set to 50 here. This choice of the initial velocity (a positive value) means an initially
radially expanding fluid and a physically reasonable positive density. It turned out that all
four dashed f (ω) velocity curves are constant and indistinguishable at this range and line
widths. All four solid, g(ω) density curves have a linear dependence of ω. From now on,
we fix w = −1, which could be the simplest choice of a dark fluid.

Figure 4 shows the space and time projections of the obtained density and the radial
velocity distributions in natural units. Upper panels are the radial (space) evolution of the
density (left) and radial velocity (right) functions. Lower panels present the time-projections
of the above distributions at fixed radius values, respectively.

The density has linear dependence on the radius at any time. The radial dependence
of velocity function looks, however, a bit more different: at very small distances close to the
origin for all time points, it has a sharp down running edge with a minima and a linear
dependence at larger distances.
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Figure 3. The shape functions of Equation (7) for different EoS strength parameters: w = −1 (green),
−0.33 (black), 0 (red), and 0.33 (blue). The solid and dashed lines represent shape functions of density
g(ω) and velocity f (ω), respectively. Note that all velocity curves coincide. The initial conditions are
f (10−3) = 0.5 and g(10−3) = 0.01.
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Figure 4. The space-time evolution of the density (left) and the velocity (right) distributions for
the case, w = −1. Curves are for the radial (top panels) and time (bottom panels) dependence at
different fixed time- and space points. The initial conditions are f (10−3) = 0.5 and g(10−3) = 0.01.

The time dependences are different. The density has a quick but linear decay at small
times and another but more slower (and almost linear) decay at larger times. The velocity
shape functions start from non-zero values and have a quick decay in time at all distances.
These properties cannot be anticipated directly from the shape functions. Note that these
are the direct results of our presented model with initial conditions for the same point,
f (ωmin = 10−3) = 0.5 and g(ωmin = 10−3) = 0.01.

It is more relevant to investigate the dynamics of the complete fluid in time and
space to understand some general trends or physical phenomena as the function of the
initial conditions. For this reason, one can calculate the total energy density of the system
including the kinetic and potential terms,

Etot = Ekin + Epot =
1
2

u2ρ− ρ

r
. (9)

Figure 5 presents the kinetic, Ekin and the potential energy, Epot densities—the two
reasonable physical quantities which can be evaluated from the hydrodynamical model
for a given parameter set. The kinetic energy is zero in the origin, has a linearly enhancing
maxima at larger distances and has a quick decay in time for all radial distances. This
means practically a blowing up sphere where the fluid moves. The potential energy has
different properties, finite values in the origin at practically all times, and a slow decay for
large times and distances.
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Figure 5. The kinetic and potential energy densities of the investigated fluid for w = −1, with initial
conditions f (10−3) = 0.5 and g(10−3) = 0.01.

Since the solutions of our non-autonomous nonlinear ODE systems are not known,
the dependence of the solutions on the initial conditions has been investigated. Drastically
changing the ratio of the initial velocity and density results in different physical scenarios.
Another point is the effect of changing the sign of the initial velocity. Positive sign means
expansion, which may be stopped later, while a negative sign result in an initial collapse of
the fluid.

Figure 6 depicts three different kinetic and total energy density distributions of the
fluid under each other for different f (ωmin/g(ωmin) ratios. The initial density is fixed
to 0.01 for all five cases. For a better comparison, both the time and the space domains
were taken: [0, 50] in natural units for all panels. The chosen ranges vary because it is not
possible to present all functions in the same range in an informative manner.

f (ωmin) = −0.5 case is seen in the first line panels with setting the kinetic-to-potential
energy ratio to −50. Both physical quantities changed radically. The feature that the
center of the fluid gains more and more kinetic and potential energy density is much more
suppressed; on the other side, at small times, the kinetic energy density of the total fluid
enhances. The larger the radius, the larger the energy density gain. Note that the values
of the maximum linearly enhance with time. One may say that this phenomenon is a
kind of “delayed” acceleration and deceleration of the fluid due to the enhanced potential
energy density. This effect is not visible for larger initial velocities, where the initial kinetic
energy densities dominate the potential energy. In this scenario, the strength of the two
energy density terms lies almost in the same range. The figure of the total energy density
function is drastically different to the former case, since it becomes negative everywhere.
The effect of the kinetic energy density for small time values at any radius is clearly seen as
a "bump" which lifts the potential energy density. The same statements are valid also for
the panel of the third line panels, where the dynamics for a small positive initial velocity
case, f (ωmin) = +0.5 is presented.
f (ωmin) = 0 case describes the dynamics of a fluid with zero initial velocity (middle panels).
Here, the effect of the potential energy density can be studied in a non-perturbed way. The
“bump” of the kinetic energy color density for small times at an all fluid radius—a short
acceleration and deceleration—of the fluid is originated by the gravitational potential of
the fluid itself.

Our results can be summarized as follows: for this ideal hydrodynamical model,
which does not include any kind of viscous damping, the self-similar ansatz may give
solutions which explode in time, if the initial conditions are so.
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Figure 6. The first column presents the kinetic energies and the second is for the total energies
calculated with different initial velocities for the same initial density of g(10−3) = 10−1, and for
w = −1. The five following rows show the corresponding physical quantities for f (10−3) = −0.5, 0,
and 0.5 initial velocities, respectively.

5. Discussion

One possible application of our analytical solution is to investigate its relation to
cosmological models and observations. The Hubble-law provides a velocity scaling [40] for
the expansion of the Universe, and numerous possible scaling mechanisms are coded in our
model via the choice of the self-similar ansatz several exponents that can describe various
time decay scenarios. Figure 3 presented a linear scale parameter is obtained. Although
the scaling curves are linear everywhere, at around certain r values, a quick change in the
velocity is provided naturally as an in-coded inflation-like behavior by the ansatz. This
critical r value depends on the initial condition. As right panels of Figure 4 show high
initial velocity in the dark-fluid limit, w = −1 (iii), become relaxed for a small, constant
‘non-relativistic’ value at a long timescale. Meanwhile, the dependence on the distance is
getting saturated and close to flat at far distances from the initial ‘Big Bang’ point. It has
been found that it is . 1% effect for nearby objects. This precision, however, is well beyond
the uncertainty of the measured Hubble-constant value [41–44]. All u[r0, t] curves in the
lower right part of Figure 4 are getting fully flat for r ranging from 2 to 4.

The solution for the local density scaling is increasing in space but flat in time. This
results in the space-time density evolution function in the left panels of Figure 4. Around
the center, this function starts linearly with the distance, and after a rapid rise, the density
of the fluid gets flat. An interesting feature of the model is that, apart from the initial point,
the local density is increasing with time—due to the dispersing shock-wave and the dark
fluid equation of state.

The structure of the ODE and the choice of the initial conditions leave us with enough
freedom for a valid physical picture. As it can be seen, the Etot ≈ 0 is well supported by the
solution, especially in the infinite space-time limit presented in Figure 6.

6. Summary and Outlook

A model where the spherically symmetric compressible Euler equation was used with
a general linear matter equation of state and gravitation has been presented and analysed.
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This model with w = −1 could be considered as the simplest candidate for dark fluid. As
a method of investigation, the self-similar ansatz has been applied, which let us solve the
problem analytically. Our model has enough freedom to be in agreement with the valid
physical picture; however, one can improve according to the recent standard cosmology
data and models.

Further work is in progress to improve the presented hydrodynamical model, e.g., via
including fluctuations [45], rotation, relativistic or two-fluid effects [46,47] in the near future.
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Nomenclature
In this paper, the following quantities were used.

ρ Density
u Radial velocity
p Pressure field
w Strength of the EoS
cs Adiabatic speed of sound
f Shape function of the radial velocity
g Shape function of the density
ω The argument of the shape functions
Ekin Kinetic energy
Epot Potential energy
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